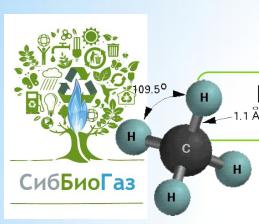
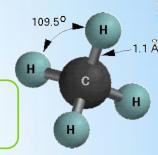


Инвестиционная привлекательность

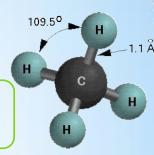
биогазовых проектов в Сибири



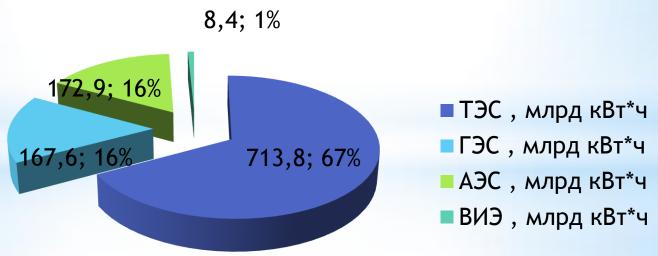


- 1. Биогаз ВОЗОБНОВЛЯЕМЫЙ источник энергии (ВИЭ)
- 2. Возобновляемая энергетика (ВЭ) это наиболее быстрый и дешёвый способ решения проблем энергоснабжения (электроэнергия, тепло, топливо) удаленных труднодоступных населенных пунктов, не подключенных к сетям общего пользования, фактически речь идет о жизнеобеспечении 10-15 млн. человек

109.5°


3. ЭНЕРГЕТИЧЕСКАЯ СТРАТЕГИЯ РОССИИ предусматривает рост объемов производства электроэнергии с использованием ВИЭ с 0,5% до 4,5% в общей структуре генерации электроэнергии до 2020 года

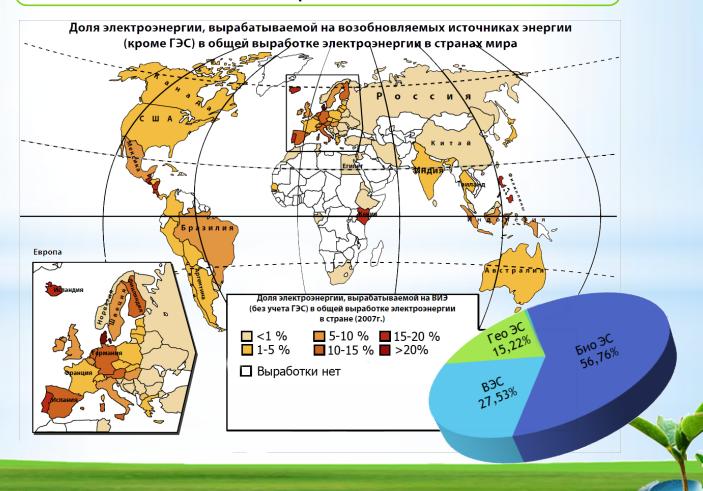
- 4. сооружение объектов возобновляемой энергетики требует МСНЬШИХ капитальных вложений и осуществляется за более КОРОТКОС ВРСМЯ по сравнению со строительством объектов традиционной энергетики
- 5. ресурсы ВИЭ неисчерпаемы, и внедрение таких источников в сети общего пользования снижают зависимость тарифов на энергию от мировых цен на энергоносители, повышая ЭНЕРГОНЕЗависимость российских компаний
- 6. согласно государственной политике, к 2020 году суммарная доля ВИЭ должна составить до 100 млрд. кВт*ч в год


- 6. Госпрограмма по повышению энергоэффективности предусматривает объем инвестиций в развитие ВИЭ в размере 681 млрд. руб до 2020г.
- 7. Экономический потенциал ВИЭ в России составляет около 300 млн. тут./год (это около 30% от ежегодного потребления первичных энергоресурсов в России)

При этом технический потенциал составляет около 24 млрд т.у.т./год

- 8. Развитие ВИЭ это общемировая тенденция в энергоэффективности
- 9. Биогазовые установки могут частично или полностью заменить устаревшие региональные котельные и обеспечить электроэнергией и теплом близлежащие населенные пункты;

объем выработанной электроэнергии в РФ в 2011 г.


< 1% - доля ВИЭ в общем объеме генерации в России

109.5° H 1.1 Å

Предпосылки развития рынка БГУ в России. Энергетика

ОСНОВНЫЕ ВЫВОДЫ

- 1. Биогаз самый распространенный в мире ВИЭ по объему генерации.
- 2. БГУ, как часть ВИЭ, способны стать основой распределенной и изолированной энергетики.
- 3. Технологии БГУ работают даже в северных районах с холодным климатом.
- 4. Очень широкий перечень сырья, пригодного для генерации.
- 5. Сроки возведения и окупаемости, а также объем капиталовложений в них при строительстве БГУ существенно ниже, чем у объектов централизованной тепло и электро энергетики.
- 6. В России существуют предпосылки развития БГУ, как объектов энергетики.
- 7. Развитие ВИЭ приоритетное направление государственной энергетической политики в России.

Улучшение экологической обстановки

Ликвидация накопленного экологического ущерба

> Ликвидация накопленных отходов производства

Ликвидация накопленных отходов потребления Противодействие загрязнению окружающей среды

БИОГАЗ

Переработка отходов производства и потребления

Внедрение экозащитных технологий на производстве

получение метана со свалок ТБО обезвреживание отходов АПК глубокая очистка стоков ОСК значительное сокращение выбросов парниковых газов

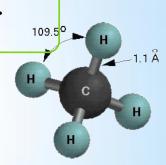
г. Новосибирск 2013 г.

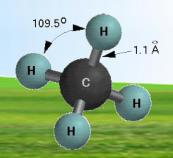
Три антропогенных источника парниковых газов

- 1. Около 60% парниковых газов выбрасывается в атмосферу при сжигании ископаемых видов топлива (в первую очередь в энергетике, в процессе промышленного производства и в транспорте).
- 2. Приблизительно 35% мировых выбросов парниковых газов приходится на лесное и сельское хозяйство: вырубка лесов, осущение болот, выделение метана в животноводстве и закиси азота при использовании сельскохозяйственных удобрений в земледелии.
- 3. Оставшиеся 5% выбросов парниковых газов (углекислого газа, метана, закиси азота и других) приходятся главным образом на процессы промышленного производства.

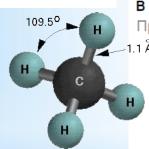
35% ЛЕСНОЕ СЕЛЬСКОЕ хозяйство

ЭНЕРГЕТИКА




60%

РОССИЯ ОБЛАДАЕТ ЗНАЧИТЕЛЬНЫМ ПОТЕНЦИАЛОМ УЛУЧШЕНИЯ ЭНЕРГОЭФФЕКТИВНОСТИ И СОКРАЩЕНИЯ ВЫБРОСОВ ПАРНИКОВЫХ ГАЗОВ ЗА СЧЕТ ЭКОНОМИЧЕСКИ ВЫГОДНЫХ МЕР


50 млрд. евро - профицит квот России на выброс парниковых газов по Киотскому соглашению (около 5 млрд. тонн эквивалента CO_2)

Меры по повышению энергоэффективности составляют почти 90% рентабельного потенциала сокращения выбросов парниковых газов в 2020 г. в России

--1.1 Å

ОСНОВНЫЕ ВЫВОДЫ

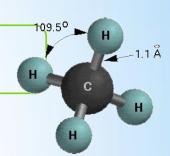
- 1. Внедрение технологий БГУ способствует существенному снижению Выбросов парниковых газов в атмосферу, за счет снижения роли угольной энергетики и утилизации метана и диоксида углерода.
- 2. Внедрение технологий БГУ способствует обеззараживанию отходов животноводства, растениеводства, птицеводства, а также отходов мясокомбинатов и молочных производств.
- 3. Биотехнологии также применяются для очистки промышленных и канализационных стоков, а также способствуют снижению уровня загрязнения почвы и грунтовых вод.
- 4. В сельском хозяйстве возможно значительное снижение площадей земли, занятой под навозохранение. В настоящий момент в России этот показатель составляет около 90 млн. Га в хозяйствах всех категорий.

ОСНОВНЫЕ ВЫВОДЫ

5. Применение органических удобрений, которые получаются после переработки отходов В БГУ могут в значительной степени способствовать восстановлению урожайности земель сельхозназначения.

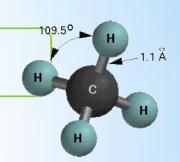
Сельхозпредприятие, утилизируя отходы своего производства сможет обеспечить полностью свои потребности в электрической и тепловой энергиях, а также обеспечить подачу тепла в близлежащие села.

Создание инфраструктуры в сёлах и деревнях!



- 1. Улучшение качества жизни на селе повлечет за собой привлечение специалистов
 - 2. Увеличение энергонезависимости предприятий АПК
 - 3. Увеличение конкурентноспособности сельхозпредприятия за счет сокращения расходов на энергию, удобрения, утилизацию отходов, заболеваемости животных, увеличения урожайности всех видов культур, а также сокращение площадей земель отчуждения и создания эффективного комплексного производственного цикла, где отходы превращаются в доходы.
- 4. Создание новых, технически сложных рабочих мест на селе

Приведем пример



Примерный расчет показателей для свинокомплекса в 50 000 голов

параметр	значение	тариф	сумма, сут	сумма, год
Выход газа, м3/сут	до 13 800	3,6 р/м3	до 49 680 р	18 133 200 p
Вырабатываемая эл. энергия, кВт*ч	до 28 980	2,07 p/кВт*ч	59 988 p	21 895 839 p
Дополнительно вырабатываемая тепловая энергия, Гкал *	до 39,3	940,3 р/ГКал	36 954 p	13 488 133 p
Количество жидких удобрений на выходе, т/сут	до 276	3 000 р/т	828 000 p	302 220 000

^{*} Норма по расходу тепла в Новосибирске на 1 м2 жилой площади 0,3 Гкал/год 39,3 Гкал в сутки эквивалентно отоплению 47 861 м2


Еще один пример

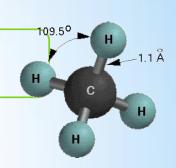
Характеристики сельхозпредприятия

Поголовье КРС - 3800 свиней - 3000

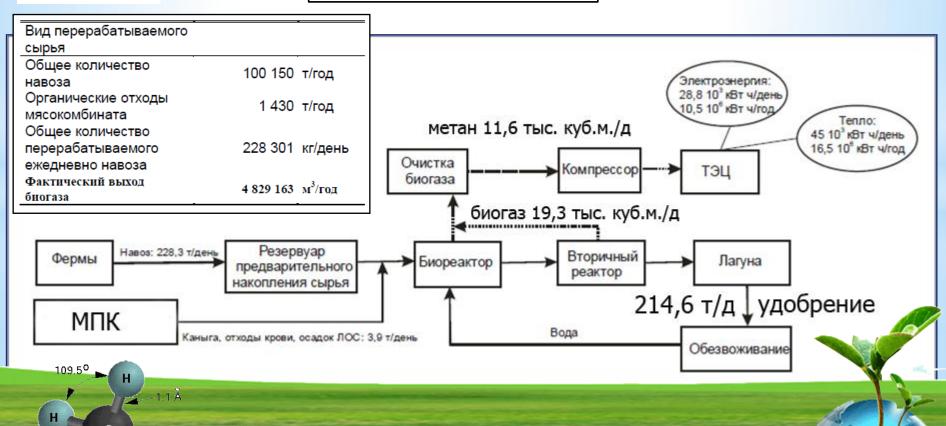
5 ферм на удалении 10-15 км друг от друга отходы

- Навоз 1350 кг/день.
- Содержание желудка и кишок (каныга) 360 кг/день
- Отходы крови 1200 кг/день.
- Осадок ЛОС¹ 1000 кг/день.
- Щетина 24 кг/день.
- Кости 2800 кг/день.
- 2. Отходы животноводческих ферм Навоз – 100 150 т/год (274 т/день)

Переработка отходов

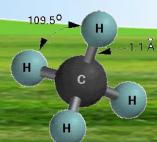

109.5° H

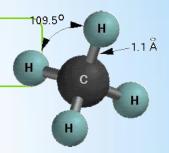
- 1. Электроэнергия
- 2. Теплоэнергия
- 3. Костная мука
- 4. Удобрения



H

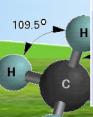
Предпосылки развития рынка БГУ в России. Развитие АПК и социальная сфера


Реальный МПК в России



109.5°

Время работы	24	ч/день	
	365	дней/год	
Продолжительность строительных работ	6	месяцев	
Затраты на приобретение оборудования		1 200 000	€
Установка оборудования	15,0%	180 000	€
Прокладка коммуникаций	7,5%	90 000	€
Контрольно-измерительная аппаратура	5,0%	60 000	€
Изоляция	3,0%	36 000	€
Электричество	5,0%	60 000	€
Здания	4,0%	48 000	€
Благоустройство территории	6,0%	72 000	€
Двигатели		1 100 000	€
Вспомогательные помещения	5,5%	66 000	€
Всего		2 912 000	€
Разработка проекта	4,0%	116 480	€
Строительство	25,0%	728 000	€
Отчисления подрядчикам	1,5%	43 680	€
итого		3 800 160	€
Техническое обслуживание	0.99/	0.600	9
железобетонных конструкций	0,8%	9 600	€
Текущий ремонт оборудования	1,0%	12 000	€
Техническое обслуживание биореактора	2,0%	22 000	€
Всего		43 600	€

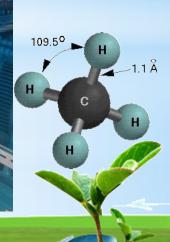


Требуемая электроэнергия	1 482 650
Электроэнергия производимая биогазовым заводом	10 526 802
Баланс, кВтч/год	9 044152

Требуемое количество тепла	8 765 348
Тепло вырабатываемое биогазовым	16 448 128
заводом Избыточное тепло	7 682 780

параметр	значение	тариф	сумма, год
Вырабатываемая эл. энергия, кВт*ч	9 044 152	2,07 р/кВт*ч	18 721 394 p
Дополнительно вырабатываемая тепловая энергия, Гкал *	до 11,41	940,3 р/ГКал	3 916 020 p
Количество жидких удобрений на выходе, т/сут	214,6	3 000 р/т	302 220 000

Вывод - срок окупаемости проекта без учета стоимости реализации удобрений, костной муки, сжиженой углекислоты, био-витаминного концентрата (БВК), составляет не больше 5 лет.


Дополнительными источниками возврата инвестиций могут являться -

- 1. Возмещение тарифа за избыточную электроэнергию, поставленную в сеть по «зелёным сертификатам», до 4,8 руб/кВтч, в зависимости от проекта
- 2. Возмещение тарифа за теплоэнергию, подаваемую в жилые дома
- 3. Тариф за горячее водоснабжение жилых домов
- 4. Доход по энергосервисным контрактам
- 5. Экономия средств на покупку лекарственных средств и пищевых добавок для корма животных
- 6. Получение дополнительной прибыли от повышения урожайности
- 7. Дополнительные прибыли за счет увеличения объемов продаж основной продукции, так как ее качество повышается

Срок окупаемости реальных проектов мощностью больше 1МВт составляет в среднем 3-5 лет. В Европейских странах, за счет дополнительных субсидий от государства на развитие ВИЭ, срок окупаемости обычно не превышает 2-3 лет

Предпосылки развития рынка БГУ в России. Развитие промышленности.

- 1. развитие возобновляемой энергетики это развитие инновационных направлений в промышленности, расширение внутреннего спроса на изделия машиностроения, а также расширение экспортных возможностей.
- 2. в технологиях возобновляемой энергетики реализуются последние достижения многих научных направлений:

метеорологии, аэродинамики, электроэнергетики, теплоэнергетики, генераторо- и турбостроения, микроэлектроники, силовой электроники, нанотехнологии, материаловедения, автоматики и т.д. В свою очередь развитие наукоемких технологий имеет значительный социальный и макроэкономический эффект, в виде создания дополнительных рабочих мест за счет расширения научной и производственной, строительной и эксплуатационной инфраструктуры;

- 3. создание возможности экспорта наукоемкого оборудования
- 4. Повышение престижности технических специальностей в высщей школе

•Суммарное поголовье птицы в 14 крупных птицефабриках Новосибирской области – около 9,5 млн. голов птицы.

Оценка потенциала СФО в биоэнергетике. Животноводство и птицеводство НСО.

СибБиоГаз Количество голов скота КРС в НСО на январь 2013 года - 139,3 тыс. голов. Количество голов свиней в НСО на январь 2013 года - 373,6 тыс. голов (без учета строительства и запуска второй очереди мясокомбината «Кудряшовский» на 200 тыс. голов)

Суммарное поголовье птицы в 14 крупных птицефабриках Новосибирской области - около 9,5 млн. голов птицы.

Энергетический потенциал	Всего	Отходы КРС	Отходы свиноводства	Отходы птицеводства
Выработка биогаза, млн м³/год	203,4	138,0	37,6	27,8
Мощность, МВт	51,3	34,8	9,5	7,0
Электроэнергия, млн. кВт*ч/год	427,2	289,8	79,0	58,4
Производство сухих удобрений, тыс. тонн/год	1688,2	1145,4	312,1	230,7
Тепловая энергия, тыс. Гкал/год	388,5	263,6	71,8	53,1
Эквивалент отапливаемой площади жилых помещений в условиях Сибири, (при норме 0,3 Гкал/год/м²), тыс. м²	1295	878,7	239,3	177,0
Сокращение парниковых выбросов в атмосферу, млн. тонн/год	305,5	207,4	56,4	41,7

Разработка и производство систем утилизации биоотходов

г. Новосибирск

СПАСИБО ЗА ВНИМАНИЕ!

Поршнев Артём Валерьевич

E-mail: pav@sibbiogas.ru м.т. +7 913 768 7766

